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Abstract

Developers and users of high-performance distributed systems often observe performance problems such as
unexpectedly low throughput or high latency. Determining the source of the performance problems requires
detailed end-to-end instrumentation of all components, including the applications, operating systems, hosts,
and networks. In this paper we describe a methodology that enables the real-time diagnosis of performance
problems in complex high-performance distributed systems. The methodology includes tools for generating
precision event logs that can be used to provide detailed end-to-end application and system level monitoring;
and tools for visualizing the log data and real-time state of the distributed system. This methodology, called
NetLogger, has proven invaluable for diagnosing problems in networks and in distributed systems code. This
approach is novel in that it combines network, host, and application-level monitoring, providing a complete
view of the entire system.

keywords: distributed systems performance analysis and debugging

1.0 Introduction

The performance characteristics of distributed applications are complex, rife with “soft failures” in which the

application produces correct results but has much lower throughput or higher latency than expected. Because of the

complex interactions between multiple components in the system, the cause of the performance problems is often

elusive. Bottlenecks can occur in any component along the data's path: applications, operating systems, device

drivers, network adapters, and network components such as switches and routers. Sometimes bottlenecks involve

interactions between components, sometimes they are due to unrelated network activity impacting the distributed

system.

While post-hoc diagnosis of performance problems is valuable for systemic problems, for operational problems

users will have already suffered through a period of degraded performance. The ability to recognize operational

problems enables elements of the distributed system to use this information to adapt to operational conditions,

minimizing the impact on users.

We have developed a methodology, known as NetLogger (short for Networked Application Logger), for

monitoring, under realistic operating conditions, the behavior of all the elements of the application-to-application

communication path in order to determine exactly what is happening within a complex system.

Distributed application components, as well as some operating system components, are modified to perform

precision timestamping and logging of “interesting” events, at every critical point in the distributed system. The

events are correlated with the system’s behavior in order to characterize the performance of all aspects of the system

and network in detail during actual operation. The monitoring is designed to facilitate identification of bottlenecks,



2 August 12, 2002

performance tuning, and network performance research. It also allows accurate measurement of throughput and

latency characteristics for distributed application codes.

NetLogger has demonstrated its usefulness in a variety of contexts, but most frequently in loosely-coupled

client-server architectures. In previous work we have shown that detailed application monitoring is vital for both

performance analysis and application debugging [3][16][17][18]. The way in which NetLogger is integrated into a

distributed system will vary, but NetLogger's behavior and utility are independent of any particular system design.

NetLogger has also proven to be a very useful tool for debugging multi-threaded programs, allowing the

developer to easily visualize interactions between threaded components, verify that certain tasks are indeed being

executed concurrently, and see when threads are blocked waiting for some event.

In section 3 of this paper we present an overview of the main NetLogger Toolkit components. In section 4 we

summarize some recent NetLogger enhancements, including a highly efficient binary format that reduces NetLogger

overhead; a reliability mechanism that will send NetLogger data to a secondary location if the primary location is

unavailable; and an activation mechanism that allows one to start, stop, or change the level of monitoring of a running

process. In section 5 we give a couple examples of how NetLogger was used to debug and tune specific applications.

2.0 Related Work

There are a number of systems that address application monitoring. log4j, part of the Apache Project [9], has

produced a flexible library for Java application logging. However, the performance of log4j is far lower than is

necessary for detailed monitoring, as is shown section 4.1 below.

Other related work includes general purpose event handling systems, such as the CORBA event service [4], the

JINI distributed event service [8], and the ECHO Event Service [6]. Of all of these, only ECHO is specifically

concerned with performance. Our message binary format, described below, is similar in size and efficiency to PBIO

[5], which is used in the ECHO system, but is simpler and more dynamic.

3.0 NetLogger Toolkit Component Overview

At Lawrence Berkeley National Lab we have developed the NetLogger Toolkit, which is designed to monitor,

under actual operating conditions, the behavior of all the elements of the application-to-application communication

path in order to determine exactly where time is spent within a complex system. Using NetLogger, distributed

application components are modified to produce timestamped logs of “interesting” events at all the critical points of

the distributed system. Events from each component are correlated, which allows one to characterize the performance

of all aspects of the system and network in detail.

The NetLogger Toolkit itself consists of four components: an API and library of functions to simplify the

generation of application-level event logs, a set of tools for collecting and sorting log files, a set of host and network

monitoring tools, and a tool for visualization and analysis of the log files. In order to instrument an application to

produce event logs, the application developer inserts calls to the NetLogger API at all the critical points in the code,

then links the application with the NetLogger library. All the tools in the NetLogger Toolkit share a common log

format, and assume the existence of accurate and synchronized system clocks. We have found that for this type of

distributed systems analysis, clock synchronization of around one millisecond is required, and that the NTP [13] tools

that ship with most Unix systems (e.g.: ntpd) can easily provide this level of synchronization.

NetLogger’s ability to correlate detailed application instrumentation data with host and network monitoring data

has proven to be a very useful tuning and debugging technique for distributed application developers.
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Figure 1 shows sample nlv results, using a remote

data copy application. The events being monitored are

shown on the y-axis, and time is on the x-axis. From

bottom to top, one can see CPU utilization events,

application events, and TCP retransmit events all on the

same graph. Each semi-vertical line represents the

“life” of one block of data as it moves through the

application. The gap in the middle of the graph, where

only one set of header and data blocks are transferred in

three seconds, correlates exactly with a set of TCP

retransmit events. Thus, this plot makes it easy to see

that the “pause” in the transfer is due to TCP

retransmission errors on the network.

In this section we give an overview of the major

components of the NetLogger Toolkit. In the following section we go into more detail on some recent NetLogger

enhancements.

3.1 Common Log Format
NetLogger includes options for both an ASCII and binary message format. For the ASCII format, NetLogger

uses the IETF-proposed Universal Logger Message format (ULM)[1] for the logging and exchange of messages. Use

of a common format that is plain ASCII text and easy to parse simplifies the processing of potentially huge amounts

of log data, and makes it easier for third-party tools to gain access to the data. The NetLogger binary format,

described below, is much faster, but harder for third-party tools to use. NetLogger includes tools for converting

between the ASCII and binary formats.

The ULM format consists of a whitespace-separated list of “field=value” pairs. ULM required fields are DATE,

HOST, PROG, and LVL; these can be followed by any number of user-defined fields. NetLogger adds the field

NL.EVNT, whose value is a unique identifier for the event being logged. The value for the DATE field has six digits

past the decimal point, allowing for microsecond precision in the timestamp. Here is a sample NetLogger ULM

event:

DATE=20000330112320.957943 HOST=dpss1.lbl.gov PROG=testProg
LVL=Usage NL.EVNT=WriteData SEND.SZ=49332

This says that the program testprog on host dpss1.lbl.gov performed a WriteData event with a send size of 49,322

on March 30, 2000 at 11:23 (and some seconds) in the morning.

The user-defined events at the end of the log entry can be used to record any descriptive value or string that

relates to the event such as message sizes, non-fatal exceptions, counter values, and so on.

3.2 NetLogger API
In order to instrument an application to produce event logs, the application developer inserts calls to the

NetLogger API at all the critical points in the code, then links the application with the NetLogger library. This facility

is currently available in several languages: Java, C, C++, Python, and Perl. The API has been kept as simple as

possible, while still providing automatic timestamping of events and logging to either memory, a local file, syslog, a

remote host. Logging to memory is available in the form of a buffer which can be explicitly flushed to one of the

other locations (file, host, or syslog), or automatically flushed when the buffer is full. Sample Python NetLogger API

usage is shown in Figure 2. As is shown in this example, “interesting” events in the code (such as I/O or processing)

are typically wrapped with NetLogger write() calls that generate user-defined start and end instrumentation events.
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Figure 1: Sample NetLogger Results
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3.3 Event log collection
NetLogger facilitates the collection of event logs from distributed applications by providing automatic logging to

a single host and port. A server daemon, called netlogd, receives the log entries and writes them into a file on the local

disk. Thus, applications can transparently log events in real-time to a single destination over the wide-area network.

3.4 Host and Network monitoring Tools
The NetLogger Toolkit includes wrappers for several standard Unix system and network monitoring tools. These

wrapper take the output of the tool and generate NetLogger formatted monitoring events. Current wrappers include

vmstat, netstat, iostat, and snmpget.

3.5 Event log visualization and analysis
We have found exploratory, visual analysis of the log

event data to be the most useful means of determining the

causes of performance anomalies. The NetLogger

Visualization tool, nlv, has been developed to provide a

flexible and interactive graphical representation of

system-level and application-level events. nlv uses three

types of graph primitives to represent different events.

These are shown in Figure 3.

The most important of these primitives is the lifeline,

which represents the “life” of an object (datum or

computation) as it travels through a distributed system. With time shown on the x-axis, and ordered events shown on

the y-axis, the slope of the lifeline gives a clear visual indication of latencies in the distributed system. Each object is

given a unique identifier by placing a unique combination of values in one or more of its NetLogger event fields.

These values are used for all events along the path. In a client-server system, one such event path might include: a

request's dispatch from the client, the request's arrival at the server, the begin and end of server processing of the

request, the response's dispatch from the server, and the response's arrival at the client.

The other two graph primitives are the loadline and the point.

The loadline connects a series of scaled values into a continuous

segmented curve, and is most often used for representing changes

in system resources such as CPU load or free memory. The point

data type is used to graph single occurrences of events, often error

or warning conditions such as TCP retransmits. In addition, the

point datatype can be scaled to a value, producing a scatterplot.

log = NetLogger(“program_name”,“x-netlog://loghost.lbl.gov”)

done = 0

while not done:

log.write("EVENT_START","TEST.SIZE=%d",size)

# perform the task to be monitored

done = do_something(data,size)

log.write("EVENT_END")

Figure 2: Sample NetLogger Usage

Figure 3: NetLogger visualization graphing
primitives

Figure 4: Scatterplot of read sizes
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For example, the size of the data passed up from the operating system from individual read() calls was instrumented

in a distributed file server, producing the graph in Figure 4.

In order to assist correlation of observed system performance with logged events, nlv has been designed to allow

real-time visualization of the event data as well as historical browsing and playback of interesting time periods. In the

real-time mode, the graph scrolls along the time axis (x-axis) in real time, showing data as it arrives in the event log.

In historical mode, the user can change the position in the log file, change the scale of the graph, zoom in and out

interactively, choose a subset of events to look at, and so on.

3.6 Clock synchronization Issues
In order to analyze a network-based system using absolute timestamps, the clocks of all relevant hosts must be

synchronized. This can be achieved using a tool which supports the Network Time Protocol (NTP) [13], such as the

xntpd daemon. By installing a GPS-based NTP server on each subnet of the distributed system and running xntpd on

each host, all the hosts' clocks can be synchronized to within about 0.25ms. If the closest time source is several IP

router hops away, accuracy may decrease somewhat. However, it has been our experience that synchronization within

1 ms is accurate enough for many types of analysis. The NTP web site (http:// www.eecis.udel.edu/~ntp/) has a list of

public NTP servers that one can connect to and synchronize with.

4.0 Recent NetLogger Enhancements

We first developed NetLogger in 1995, and first published it in 1996 [18]. Over several years experience, we

discovered a few missing features that we needed to add to make NetLogger more useful in a distributed

environment, and to be suited for instrumenting middleware as well as client and server code.

In this section we summarize some recent NetLogger enhancements, including a highly efficient binary format

that reduces NetLogger overhead; a reliability mechanism that will send NetLogger data to a secondary location of

the primary location is unavailable; and an activation mechanism that allows one to start, stop, or change the level of

monitoring of a running process.

4.1 NetLogger Binary Log Format
In general we have found that performance analysis of distributed systems requires monitoring events before and

after every I/O operation. This can generate huge amounts of monitoring data, and great care must be taken to deal

with this data in an efficient and unobtrusive manner.

Consider the simple use-case of monitoring a heavily used FTP server. For example, a user notices downloading

files is taking much longer than it did last week. The user has no idea why performance has changed. Is there a

problem in the network, disk, end host, FTP server, or FTP client? Monitoring information is needed to pinpoint the

bottleneck, and determine what changed to cause this bottleneck. Current performance must be analyzed, and

compared against a baseline drawn from previously archived information. This performance analysis requires

monitoring data for hosts (CPU, memory, disk), networks (bandwidth, latency, route), and the FTP client and server

programs.

In the example above, the amount of monitoring data generated from a well-connected large FTP server could

overwhelm a slow logging system. Consider a fast FTP server connected to a Gigabit-Ethernet network, instrumented

to log the start and end times for all network and disk read and writes, with 10 simultaneous clients each transferring

data at 10 MBytes per second. This server will generate around 6000 events per second of monitoring data. Assuming

each monitoring event is 50 bytes, this equates to 300 KBytes/second, or more than a gigabyte per hour, of

monitoring data. Clearly, the instrumentation data needs to be very compact and efficient in order to generate and

store this much monitoring data without perturbing the system.
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Previous versions of NetLogger used the IETF-proposed ULM format, described above. While easy to read and

parse, this format imposed a great deal of unnecessary overhead. In order to improve efficiency, we have developed a

new binary format that can still be used through the same API but that is several times faster and smaller, with

performance comparable or better than binary message formats such as MPI [11], XDR [15], SDDF-Binary [14], and

PBIO [5].

Conceptually, the NetLogger binary format carries the same information that the ULM format does; the API

makes the underlying format transparent to the application. In reality, NetLogger binary messages are broken into a

“header”, which is sent only on the first write() call, and a “body”. The header message describes the event structure,

including the event names, data types, and constant values. The body message has a timestamp and the data values.

Five data types are supported: 32 and 64-bit integers, 32 and 64-bit floating point numbers, and 255 byte (maximum)

strings. This limited set of data types streamlines the entire NetLogger library but does not, for the purposes of

instrumentation and monitoring, greatly restrict functionality. Most instrumentation messages are short and simple.

For example, logging a transfer of a block of data requires only a timestamp, host name, integer disk offset, and

integer number of bytes.

In order to port the internal data representation across different architectures, NetLogger uses a methodology

called “receiver-makes-right”, in which the sender uses its native representation and the receiver converts if its native

representation is different. This behavior is optimal for instrumentation because it minimizes perturbation at the

sender, which is running the application that we do not wish to disturb.

For efficiency, the NetLogger library, by default, employs 128KB buffers that automatically flush when full or

when one second has passed, thus limiting latency but minimizing the load on the system at high data rates. This is

useful for the small messages typical in monitoring, where buffering can reduce the number of I/O calls by a factor of

103.

We gathered performance results for the binary

message format in both C and Java. In both languages,

we compared the binary format to NetLogger’s ASCII

ULM and XML formats. In C, we also ran the same test

with Pablo’s binary SDDF format and with PBIO. In

Java we recreated the ULM log format with log4j, since

log4j is a common solution for instrumentation of Java

applications. Results are shown in Figure 5. For both C

and Java, the highest throughput is clearly from binary

NetLogger. For more information on the testing

methodology uses for this results, see [7].

4.2 NetLogger Reliability API
The new NetLogger Reliability API adds to NetLogger fault-tolerance features that are essential in distributed

computing environments. For distributed monitoring, the particular challenge is that temporary failures of the net-

work between the component being monitored and the component collecting the monitoring data are relatively com-

mon, especially with more than a handful of sites involved. Because NetLogger uses TCP connections to efficiently

and reliably transfer the monitoring data, network failures will terminate the data stream.

One solution would be to open the connection only when there is data to transfer. However, this reduces but does

not eliminate the possibility of network failure during the data transfer, and is inefficient at high data rates. Instead,

we have implemented a more general solution based on the idea of a temporary fail-over destination for the monitor-
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ing data. After the NetLogger connection is created, a single API call provides the library with a “backup”, i.e.

fail-over, destination to use. This may be any valid NetLogger destination, but typically is a file on local disk. If the

primary destination fails, all data will be transparently logged to the backup destination. Periodically, the library will

check whether the original destination has “come back up”. If so, the library will reconnect and, if the backup destina-

tion was a file, send over all the data logged during the failure.

4.3 Monitoring Activation
Due to the volume of instrumentation data that can be generated by services such as at FTP server, we needed to

add a mechanism to NetLogger to control long-running processes such as servers. We need to have the ability to

change their logging behavior without command-line arguments, restarting, special signal handlers, or specialized

control messages.

The NetLogger API has a new trigger function that tells the library to check, at user-specified intervals, for

changes to the log destination. Two types of triggers are provided: a file trigger that scans a configuration file, and an

activation trigger that connects to a remote service called the activation service daemon, allowing users to activate

various levels of NetLogger instrumentation by sending activation requests to the activation service. Both of these

mechanisms allow users to dynamically change NetLogger’s behavior inside of a running application. This is very

useful for long-lived processes like file servers, which may only occasionally need fine-grained instrumentation

turned on. For more information on NetLogger activation, see [11].

5.0 Case Studies

In this section we present two case studies on the use of NetLogger for tracking down problems. The first case

study shows how NetLogger helps tune an application, and the second case study shows how NetLogger discovered a

“soft failure” that no one even knew existed.

In the first case, NetLogger was

used to instrument a 3-dimensional

visualization engine called Radiance

[3] that read data off disk, rendered

it, and sent it out to clients for

display. Here, we will show how

NetLogger helped tune the Radiance

servers. Two graphs of the results

are shown in Figure 6. The upper

graph shows the results before

NetLogger tuning. The line between

“BE_LOAD_START” and

“BE_LOAD_END” indicates the

amount of time to read the data from

disk, and the line from BE_RENDER_START” and BE_RENDER_END” is the amount of time to process the data

into an image for display. The developer in this case had assumed that the I/O time was greater than the image

rendering time, and therefore believed that there would be minimal advantage gained by going through the effort

required to make the program multi-threaded, and overlap processing with I/O. However after seeing these results, it

was clear to the developer that pipelining I/O and processing was indeed worth the effort, and by doing this, obtained

the results in the lower graph; almost double the performance.

sequential
I/O and
processing

overlapped
I/O and
processing

time (seconds)

I/O starts when
processing
ends

next I/O starts
immediately

Figure 6: Before and after NetLogger analysis
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In the second case study a high-performance FTP client/server called GridFTP [2] was instrumented. Among

other enhancements, GridFTP extends the FTP protocol to transfer a single file across several parallel TCP streams.

In some WAN environments this can cause a dramatic (almost linear) speedup. Figure 7 shows NetLogger lifelines

for a GridFTP client. The three groups of lifelines show three separate reading sockets in a parallel FTP client, and

includes events for reading header and data packets. Data should always be arriving on all three sockets, but clearly

the client was not servicing all three sockets equally. There was a bug in the way the Unix select() call was being

used, and this bug had existed, undetected, for several months until this NetLogger analysis uncovered the problem.

Despite the bug, the multi-stream version of the FTP client was faster than the single stream version, so no one had

noticed this problem. This is the type of subtle bug that NetLogger is very good at tracking down.

These two case studies demonstrate the NetLogger’s ability to analyze a single application. In both of these cases

the NetLogger visualization tool made it easy to spot problems. However, NetLogger’s real power is demonstrated by

analyzing a distributed application, and correlating monitoring from the application, host, and network. Previously

mysterious interactions between components become visible, like the correlation between the block transfers and

TCP retransmits shown in Figure 1.

6.0 Conclusions

In order to achieve high end-to-end performance in widely distributed applications, a great deal of analysis and

tuning is needed. The top-to-bottom, end-to-end approach of NetLogger has proven to be a very useful mechanism

for analyzing the performance of distributed applications in high-speed wide-area networks.

NetLogger can be a valuable “finger pointing” tool. In many cases where lower than expected performance is

observed, everyone points the finger to put the blame on someone else. The application developer blames the

network, the LAN people blame the WAN, and the WAN people blame the LAN. NetLogger can correlate monitoring

events from applications, hosts, and networks to determine where the bottlenecks actually are, thus pointing the

finger at the guilty party.

All NetLogger Toolkit components under an Open Source license, and can be downloaded from

http://www-didc.lbl.gov/NetLogger/.
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